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Some Recent Contributions to Panel Flutter Research

Y. C. Fong*
California Institute of Technology, Pasadena, Calif.

With the objective of formulating a realistic computing program to analyze panel flutter
in aerospace vehicles, plausible simplifying assumptions are examined in the light of experi-
mental results. It is shown that in certain areas very simple analysis yields respectable re-
sults, whereas in other areas great elaboration is necessary to obtain an accurate prediction.
In particular, the role played by the boundary layer flow is discussed. The attenuation and
phase shift in pressure-deflection relationship caused by the boundary layer can become im-
portant under certain circumstances. Examples are given which show that the boundary
layer greatly stabilizes flat plates in a transonic or low supersonic flow and circular eylindrical
shells at higher Mach numbers. Some recent contributions to panel flutter research by the
author and his colleagues and students at the California Institute of Technology are summa-
rized. Although details are to be published elsewhere, a brief description of experimental re-
sults concerning flat plates and cylindrical shells is given here. The experimental and theo-
retical investigations taken together provide a fairly clear picture with regard to proper as-

sumptions for an accurate analysis. Recommendations for future research in this field are

given.
Nomenclature
A = pU2L3/MD, ratio of dynamic pressure to panel
rigidity = =* (Q of Ref. 1)
A, = coefficients of Fourier series of z(x,t), Eq. (9)
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Um =m = 1,2, ..., coefficients of sine series of zo(z,t),
Eqgs. (29) and (30)

a, a; = velocity of sound, in main flow and boundary
layer, respectively

B, = coefficients of Fourier series of z:(x,t), Eq. (10)

C,,D,, E, = coefficients, see Eqs. (12) and (13)

D = Eh3/[12(1 — u?)], bending rigidity of plate

f = {requency, cps ’

g = gtructural damping factor

h = thickness of plate or shell wall

k = L /U, reduced frequency in main flow

ks = wlL/Uj;, reduced frequency in boundary layer

L = chord length

M, M, = Mach number of main flow and of boundary layer,
respectively

n = number of waves along circumference (number of
nodes = 2n)

Ap = see Eq. (33)

p(z,t) = wall pressure

P, D5 = static pressure in freestream and in boundary layer,
respectively

P = excess of model internal pressure above ps, psig

P = wind tunnel stagnation pressure

po(z,t) = wall pressure in potential flow without boundary
layer

q = %pU? dynamic pressure of main flow

R = radius of middle surface of circular cylinder

r,0,x = cylindrical polar coordinates

7,75 = absolute temperature in freestream and in bound-

ary layer, respectively



APRIL 1963

t = time

U = velocity of freestream

w0 = velocity components in z,y directions

V. = velocity of traveling waves, see Eq. (9)

w(z,r,t), = radial velocity on wall and amplitude, respectively

Wy

Wrms = root mean square value of the deflection (radial
or vertical) of an oscillation shell or plate

z,y = rectangular Cartesian coordinates; z in flow
direction

2 = constant

2o(z,y) = wall displacement

z1(z,y) = displacement of the edge of boundary layer

ay = px/L, wave number, see Eqs. (9-11)

{oa]mn, = see Eq. (36)

[012] mn

B3 = [1 — My

5 = []W — 1]1/2

Vv = constants, see Eqgs. (14) and (23)

8 = idealized boundary layer thickness

3 = apparent boundary layer thickness (wall to 999,
{reestream-velocity point)

& = constants, see Eqgs. (15) and (23)

Ky = {5, boundary layer thickness parameter, see Eq.
(18)

u = Poisson’s ratio

v = =£1, & 2, ..., an index

Py Py = density in freestream and in boundary layer,
respectively

ay = constants, see Eqgs. (19) and (23)

&5 b4 = velocity potentials in main flow and in boundary
layer, respectively

@ = circular frequency

®m; B_m = pressure coeflicients, see Egs. (31) and (32)

M(«) = ratio of wall pressure with and without boundary

layer, see Egs. (20) and (21)

1. Introduction

ANEL flutter is an oscillation of a thin-walled structure

in a flow. The existence of this phenomenon has been
demonstrated in laboratories, and many recondite articles
have been written about the subject, but today there is
neither a reliable formula to tell how to design against panel
flutter nor a computing program of guaranteed accuracy.
It is not a question of programming or computer size; it
is a question of problem formulation.

In the field of aeroelasticity, panel flutter research has been
a new experience. The physical features of the problem are
simple, the oscillations are mild, but the theoretical and ex-
perimental difficulties are great. Theoretical analyses have
gone far deeper into the subject than the aeroelasticians are
accustomed to, yet areas of agreement between theory and
experiment are limited.

Few will dispute that panel flutter falls within the realm of
classical continuum mechanics. One has no difficulty writing
down all the partial differential equations and boundary
conditions for a panel and a flow around it, but few would
tackle the full problem without heuristic simplifications. To
assure numerical accuracy, one must keep the analysis from
becoming too involved. Any justifications of simplifying
assumptions are therefore of interest. The objective of
theoretical engineering research is to find the simplest
framework within which a physical phenomenon can be
described satisfactorily. The mild phenomenon of panel
flutter, however, turns out to be rather delicate; it cannot
stand oversimplification.

About 70 papers on panel flutter published before June
1960 were reviewed by Fung.! By comparing various
theories, it was shown there that

1) Since the differential equations are non-self-adjoint,
the convergence of Galerkin or Rayleigh-Ritz method cannot
be assured. In fact, the Galerkin method yields spurious
flutter boundaries in the case of a membrane; but, when
bending rigidity is included (so that the order of the differ-
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ential equation is raised), known examples show that flutter
boundaries obtained by Galerkin’s method are not spurious.

2) Yor flat plates, the simplification of static aerodynamic
force (Ackeret’s formula), quasi-steady approximation, (in
which the first-order terms in reduced frequency are re-
tained), or linear piston theory (Lighthill’s piston theory
with linear terms retained) seems to yield good results at
higher Mach numbers (say, M > 2). But these expressions
lead to entirely erroneous flutter conditions when M < 2Y/2,

3) Panels of infinite chord length (infinite flat plates) be-
have quite differently from single-bay or multi-bay panels of
finite chord.

4) Goldenweiser’s “medium length” ecylinder equation
should not be used for flutter analysis because it leads to
qualitatively erroneous results.

In all papers reviewed in Ref. 1, the structures are treated
as elastic plates or shells according to the classical Bernoulli-
Euler-Kirchhoff approximation, and the flow is considered
as nonviscous potential flow. Boundary conditions usually
are idealized. The motion is assumed to be of infinitesimal
amplitude, so that the differential equations and the boundary
conditions are linearized and that the boundary conditions
are applied on the mean position of the panel rather than
on the actual surface. More recent studies (since 1960) have
shown that these general assumptions may need revision.
In particular, the viscosity boundary layer in the flow seems
to have important effects in the flutter of flat plates at lower
supersonic Mach numbers and in the flutter of cylindrical
shells (even at higher Mach numbers). For corrugation-
stiffened panels, the classical plate theory may not apply.
The boundary conditions are shown to be important. And,
for eylindrical shells, our former concept about the flutter of
buckled shells may need drastic revision.

It is the purpose of this article to review some work done
by the present writer and his colleagues at the California
Institute of Technology, with respect to a critical examination
of the general assumptions mentioned in the foregoing.

2. Areas in Which Elementary Analyses Have
Reasonable Success

In the formative years of aeroelasticity around 1929,
pioneering investigators used quasi-static aerodynamic ex-
pressions with remarkable success. However, later advances
in the speed of aircraft necessitated the development of an
elaborate nonstationary airfoil theory. It was, therefore,
an important event when Lighthill,2 in 1953, pointed out
that the “piston’” theory furnishes a good approximation to
unsteady flow at high Mach numbers. Retaining only the
linear terms, the piston theory simplifies flutter analysis
tremendously, as was shown first by Ashley and Zartarian.?
Comparison of flutter boundaries computed with the linear
piston theory with those using full supersonic flow theory
seems to suggest that the approximation is good for M as
low as 2.

The crucial test, of course, lies in comparison with experi-
ments. Valuable early exploratory experiments by Sylvester
and Baker,* Sylvester, Nelson, and Cunningham,’® Jordan,
Greenspon, and Goldman,® Eisley,” Kordes, Tuovila, and
Guy,® Kordes and Noll,° Tuovila and Presnell,'* Dixon,
Griffith, and Bohon,™* and many unpublished experiments
by Boeing, Martin (Denver), and other companies have
thrown much light on the flutter problem, but generally
these experiments are too broad or too complicated to permit
a detailed comparison with theory.

Since in panel flutter many factors are important, including
the flow conditions, boundary layer, the edge restraint condi-
tions, the initial curvature, and the tension or compression
loads in the plate due to mechanical or thermal effects, a
comparison between theory and experiment can be done only
if both the theory and the experiment cover the same ground.
In other words, all experimental conditions must be analyzed
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~and corrected in the theory before the comparison. Such
an evaluation obviously is important and is not easy.

A series of experiments by Anderson!? lends support to
the claim that, for the flutter of flat panels, the potential
flow linear piston theory yields reasonable agreement with
experimental results at higher Mach numbers; this will be
described briefly here. Anderson’s experiments were per-
formed at California Institute of Technology in the Jet
Propulsion Laboratory 12-in. supersonic wind tunnel at
Mach number 2.81. His models were mounted in a wedge-
shaped aerodynamic frame similar to that which was used
previously by Eisley” for buckled panels in the same tunnel.
A number of flat, rectangular panels were designed to study
two-dimensional flutter. These panels were clamped at
front and rear with free sides that extended into the boundary
layer at the sides of the tunnel. A flexure arrangement was
used at the rear edge to minimize midplane stresses. These
panels fluttered in a two-dimensional mode. The experi-
mental results, stated in terms of a parameter A = paUL3/D,
are about 35% higher than those predicted by Houbolt!s
on the basis of linear piston theory. Stated in terms of
plate-thickness chord-length ratio required to prevent the
two-dimensional flutter of a flat, unstressed plate, the experi-
mental results are about 159, higher than the theoretical
values.

Some details are of interest. The definition of flutter
will be discussed first. In a linear theory, the critical flutter
condition represents a sustained harmonic oscillation. On
the unstable side of the flutter boundary, the amplitude of
oscillation grows exponentially with increasing time; on
the stable side, it subsides exponentially. Experimentally,
an entirely different phenomenon is observed. The panel
lies in a flow that is more or less turbulent, and so on the stable
side one expects a random oscillation of small amplitude.
On the unstable side, the growth of amplitude is limited by
the nonlinear effects of membrane tension, and so one expects
a steady limit cycle oscillation. A typical amplitude of
oscillations vs tunnel stagnation pressure at Mach number
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Fig. 2 Resonance frequencies for a flat panel 0.0153-in.
thick; two-dimensional flutter; M = 2.81
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2.81 for a flat plate of thickness 0.015 in., chord length 9.25
in., at zero midplane stress, is-shown in Fig. 1. The point
where a rather sudden increase in amplitude of oscillation
occurs is regarded as the critical flutter condition.

The frequency response also is of interest. In a linear
theory, the time dependence of the solution is assumed to
be of the form ¢, In a vacuum, a panel in free vibration
has a real-valued frequency spectrum, w; € w2 € wz < ....
If aerodynamic damping is ignored, the theoretical frequency

spectrum changes continuously with the total pressure of the

flow (other parameters being fixed). A critical total pressure
P, is reached when two frequencies coalesce. At p: > Py,
the pair of coalesced frequencies becomes a pair of complex
conjugate numbers, one of which means a divergent oscilla-
tion. If aerodynamic damping is not ignored, the situation
is similar, except that before the frequency coalescence the
time factors w, are complex with positive-imagihary part,
so that the motion is convergent; this situation continues
until a value of p, is reached at which a pair of w.’s coalesce;
then at another, higher value of p, say pewr, one of the roots
w, will have a negative imaginary part, corresponding to a
divergent oscillation. ‘This theoretical feature has come to
be accepted widely, and many engineers have based their
design concepts- on the-frequency spectrum: the closeness
or coincidence of the frequencies of two vibration modes in a
vacuum is regarded as a criterion of panel flutter. This
concept, of course, is unfounded, although it does have heur-
istic value.

In wind tunnel experiments, free vibration conditions do
not prevail. Anderson’s frequency surveys during the ap-
proach. to. flutter failed to turn up any frequency coalescence.
Figure 2 shows a typical set of curves of resonant frequencies
vs stagnation pressure of the flow. The resonant frequencies
in the preflutter region were followed either by using a magnet
excitation or by a harmonic analysis of the random oscilla-
tions of the panel. In the case shown in Fig. 2, it was
possible to follow these frequencies through the onset of
flutter. It was easy to see that flutter occurred at one.of the
resonant frequencies. The amplitude of the response at this
frequency grew rapidly as flutter started, completely dwarfing
the response at the other frequencies.

These examples serve to show the difference between the
problem that is commonly formulated in theory and that
which is observed conveniently in experiments. The com-
parison of theory and experiment, is, therefore, intuitive in
character, and agreement or disagreement cannot be accepted
on face value. For instance, from the absence of frequency
coalescence in Anderson’s experiments, it does not follow
immediately that the linear theory is all wrong, because al-
though the theory examines free vibration, the experiment
observes a stochastic forced oscillation due to wind tunnel
turbulences. Thus, at p: greater than p.,, although one
theoretical mode whose frequency w, becomes complex with
negative imaginary part passes into a limit cycle, other modes
still can be excited under a random loading. To justify
fully a comparison, the nonlinear aspects must be examined.

A large number of factors are ignored in comparing Hou-
bolt’s theory and Anderson’s experiments, such as the
boundary layer, the initial imperfections of the plate, the
uncertainties of the clamped edge conditions, the small
static pressure differential across the plate between a cavity
below the plate and the freestream above, and the acoustic
action of the cavity. The influences of these factors, except
that of the boundary layer, are discussed in some details in
Ref. 14. Application of these corrections will not alter the
comparison very much. It may be concluded that the pre-
diction of critical thickness ratio based on the linear potential
theory agrees with experiments to within approximately
15%. One must regard the linear potential theory as re-
markably successful in the problem of flutter of flat plates
at Mach number 2.8.
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If the nonlinear problem is studied in the future, it would
be interesting to examine and extend also Anderson’s tests
on slightly curved plates, which also are reported in Ref. 12.
The fact that slightly curved plates (with cylindrical genera-
tors perpendiular to the flow) remained almost motionless
up to the flutter boundary, where large amplitude flutter
occurred (much more violent than the corresponding flat
plate case), must be a revelation of the difference in nonlinear
effects in flat and curved plates.

3. Difficulties with Flat Plates at Lower
Supersonic Mach Numbers

It is expected that the linear piston theory becomes in-
applicable at lower supersonic Mach numbers, but it is un-
expected and disappointing that the classical linearized
supersonic flow theory of an inviscid fluid also fails to predict
the flutter condition correctly.

A series of experiments was performed by Lock!* in the
Guggenheim Aeronautical Laboratory, California Institute
of Technology 4 X 10 in. transonic wind tunnel at Mach
numbers between 0.85 and 1.5. The model installation was
designed to represent two-dimensional conditions. In these
experiments, the wind tunnel stagnation pressure was fixed,
but the Mach number could be varied continuously. A set of
plates of different thicknesses was used. The experimental
definition of flutter and the frequency response measurements
were similar to those discussed in the preceding section. Fig-
ure 3 shows the flutter boundary, where 4/L represents the
panel thickness to chord length ratio. The plates were
clamped at the front, free on the sides that were parallel to
the flow and next to the tunnel wall, and attached at the rear
edge to a flexure that eould translate to relieve membrane
stress in the plate.

Theoretical results* for these plates based on the linear,
inviscid supersonic aerodynamics also are shown in Fig. 3.
(Curve relating to boundary layers will be discussed later.)
The effects of flexure, the initial curvature, damping, mem-
brane stress, static pressure differential across the plate, and
the number of modes used in the calculations, etc., were
examined; these effects will not change the theoretical curves
substantially 14 After these detailed considerations, it was
concluded that the effect of the viscosity boundary layer
might be the main cause of the discrepancy between the
theoretical and experimental flutter boundaries at Mach
numbers below 1.4,

The suspicion about the influence of boundary layer was
strengthened later when a series of experiments was per-
formed on cylindrical shells at the NASA Ames Research
Center’s unitary wind tunnel in June 1961. In that test,
the flow was parallel to the cylinder axis, and the model was
designed so that it should flutter according to any one of the
seven theories proposed at that time (Miles,’® Hedgepeth
and Leonard,'® Stepanov,'” Voss,’® Strack and Holt,** Shul-
man,?® Krumhaar?j, The instrumentation employed should
be able to pick up any one of the modes of flutter proposed
in these theories. However, nothing happened; the shell was
stable throughout the operating range of the tunnel, as long
as the critical buckling condition was not approached (at
which none of the theories applies). Since the forementioned
theories cover a wide variety of physical assumptions and
mathematical techniques of solution, it was felt that the fault
lies in an assumption common to them all: that the fluid is
considered inviseid.

4. Experiments on Circular Cylindrical Shells

It long has been suspected that all published theories of
flutter of circular cylindrical shells!s~2 yield pessimistic re-
sults about shell instability, because many missiles and space-
craft that had flown successfully had skin thicknesses thinner
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than theoretically recommended gages for safety against
flutter. The June 1961 tests confirmed this suspicion. Fol-
lowing that first, negative experiment, thinner shells were
made, and the tests were repeated at the NASA Ames 8 X 7
ft tunnel in May 1962. Flutter then was observed, a very
brief description of which will be given below (see Ref. 22
for details).

The two models used in the Ames experiments were thin-
walled monocoque circular cylinders of electroplated copper
with a radius of 8 in. and length of 16 in. The wall thickness
of these models were 0.0032 and 0.0040 in.; the radius to
thickness ratios B/ were, therefore, 2500 and 2000, respec-
tively. The flow was parallel to the cylinder axis. The
models were made by an electroplating process. In this
process, the relatively heavy end rings first were fastened
to a mandrel, on which a layer of wax of about 1-in. thick
was applied. The waxed mandrel then was machined care-
fully to the right dimensions, sprayed with conductive silver
paint, and electroplated. When the wax was removed after
plating, a seamless cylinder welded integrally to the end
rings was obtained.

The thin-shell model then was mounted on a heavy con-
centric eylinder (‘“center body”’) so that the outside of the
shell could be exposed to a flow while the inside was exposed
to a chamber that could be pressurized. A forebody that
assured uniform flow over the model and an afterbody that
connected the model to the sting were added. The model
dimensions are shown in Fig. 4. A photograph of the model
in the wind tunnel is shown in Fig. 5. The entire model
support system was a duct, not unlike that of a jet engine,
to minimize the frontal area and to shorten the forebody.

For instrumentation, three inductance pickups were used.
These pickups measured the deflection of the shell without
touching it. One pickup was fixed, and two were mounted
on a gear-driven drum that could rotate concentrically with
the centerbody. One of these last-named pickups was fixed
on the drum, whereas the other could translate parallel to the
cylinder axis (see Fig. 6). The continuous motions of these
pickups made it possible to record the longitudinal and cir-
cumferential displacements continuously. These displace~
ments were recorded on magnetic tape with an FM system.
Spectral and phase angle relationship analyses were made
from these records. In this way it was possible to dis-
criminate various flutter modes: short wave length traveling
waves (Miles), long traveling waves (Hedgepeth and
Leonard), symmetric flutter (Krumhaar, Stepanov, and
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Voss), and flutter with many circumferential nodes (Hedge-
peth and Leonard, Voss, Stepanov, Holt and Strack, etc.).

The remarkably versatile Ames Unitary Plan wind tunnel
provided mechanisms for continuous variation of Mach num-
ber and stagnation pressure. Searching of flutter could be
done, therefore, by varying M (in the range 2.5 to 3.5), p.
(in the range of 4 to 50 psia) and p., defined as the difference
between the model internal pressure and the static pressure
in the flow (in the range -+4 psig, when hoop stress in the
shell is in tension, to —0.02 or —0.04 psig, when the shells
buckled).

Extensive still-air vibration tests were performed by
Watts.?* The vibration characteristics were similar to what
was found before by Fung, Sechler, and Kaplan.2¢ Theo-
retical background of the method of acoustic excitation used
in Ref. 24 was examined by Keith and Krumhaar.”® Inter-
pretation of vibration results due to acoustic excitation may
become complicated. To avoid confusion, an electrodynamic
excitor wasused. The damping coefficient, expressed in terms
of the “structural damping factor g,” was estimated to be
0.0025. A brief sketch of the results follows.

¥ig. ¢ Photograph of model instrumentatio
traversing mechanism

pickup
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A. Motion

When the wind tunnel was started at p. = 4 psia and p,, =
4 psig, rough vibrations of the shell occurred as long as the
flow was subsonie, but the shell becanie very quiet as soon as
supersonic flow was established (root mean square amplitude
of oscillation of order 0.0001 in. or about % thickness).
The small motion in this regime is random in amplitude, as
is shown in the lower oscillogram traces in Fig. 7 (part c).

As the stagnation pressure and model internal pressure were
varied, two other types of motion occurred under certain
conditions. The middle traces (part b) in Fig. 7 illustrate a
clean periodic oscillation. The upper traces (part a) in
Fig. 7 indicate a kind of beating between two or more sinu-
soidal oscillations of slightly different frequencies. The
corresponding energy spectra obtained by harmonic analyses
are shown in Fig. 8, which corroborates the foregoing observa-
tion. Types a and b usually were associated with fairly large
amplitudes of oscillations (of order 2 or 3 skin thicknesses),
only these types qualify for the term flutter.

B. Flutter Condition

As in the case of flat plates, an experimental definition of
flutter is necessary, because the flutter condition formulated

Fig. 7 Types of cylinder wall motion: a,b) shell response

during flutter; c¢) shell response prior to fluiter. Esti-

mated sweep speed was of the order of 0.003 sec per major

division of the scale. Vertical scales for a and b are much
larger than for ¢
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in linearized theories (an exponential increase of amplitude
with increasing time) is unobservable. In practice, only the
limiting cycle oscillations can be seen. Therefore, one is
faced with the problem of relating the amplitude of a non-
linear oscillation with the linear concept of instability.
Intuitively, a plausible relationship can be -established, as
just indicated in the flat plate case, but a rigorous treatment
is wanting.

For cylindrical shells, a plot of the root mean square values
of the amplitude of the shell displacement vs the stagnation
pressure of the flow yields a set of data as shown in Fig. 9.
A rather sudden rise of amplitude occurred as p. exceeds
certain critical value. This critical value, as absorbed in
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the parameter (R/h)(¢/EB)'3, seems to yield the experi-
mental critical condition:

(a/BE)"*(R/h) =

which seems to be independent of the internal pressure pn
when it is positive. Let this be called the critical flutter
condition. Figure 9 shows that beyond the critical flutter
condition the rate of rise of the amplitude of oscillations de-
pends on the internal pressure in a rather comphcated man-
ner. To emphasize the last point, in Fig. 10 a plot is pre-
sented of the rms amplitude of radial displacement at pickup
number 1 at M = 2.49 and p, = 4.98 psi. The details of
this curve are hard to understand. It is worthy to note that,
as the model internal pressure tended to zero, the amplitude
suddenly became very small. At negative pressure the
amplitude increased very rapidly as the negative pressure
was increased, but when buckling was approached under
lateral hydrostatic pressure, the amplitude again decreased.
At large buckles the shell was very stable again.

C. Flutter Mode

An analysis of the correlation of the displacement histories
and the phase relationship of the oscillations at different
pickups, when these pickups were moved continuously both in
the axial and in the circumferential directions, gives the
flutter mode. In the Ames tests the instrumentation was
sufficient to discriminate among various types of traveling
and standing waves but was not, because of the large dis-
tances traversed, accurate enough to give the mode shapes
quantitatively. An example will be shown here, for a flutter
point at M = 2.49, p, = 4.85 psi, p» = 1.23 psi, of the 0.0032-
in.-thick shell, the variations of the rms amplitude of the
oscillation in the axial and circumferential directions are
shown in Fig. 11. The corresponding phase relationship of
the motion sensed by the moving pickups relative to that
sensed by the fixed pickup revealed a phase shift of about
20° in axial traverse. On circumferential traverse, the phase
angle oscillates between 0° and 180° seven times over a semi-
circle. The power spectrum of the motion at the fixed
pickup is given in Fig. 12. From Figs. 11 and 12, one may
conclude that the flutter mode at this point consists of many
circumferential waves, i.e., having many nodal lines parallel
to the cylinder axis (n = 14 waves in this example), whereas
in the longitudinal direction there was no nodal line between
the ends.

Analyses of other flutter points lead to similar results. It
must be concluded from these measurements that traveling
waves of small wavelengths as assumed by Miles and the
circular symmetric modes as considered by Krumbhaar,
Stepanov, ete. were not observed.

w
rms
Pickup no. §

L 1

Q.15 0.67
AXIAL POSITION X/L

a) AXIAL TRAVERSE

Wems V/WW/\/ Pickup no. |
V\MNM/\/\W s

L | NI
-90 Q 90
Counter Clockwise ANGLE, §~ DEGREES Clockwise Looking
Looking Downstream b} CIRCUMFERENTIAL TRAVERSE Downstream

Fig. 11 Flutter mode determination: longitudinal and
circumferential traverses
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Fig. 12 Power spectrum of
0.0032-in. shell in flutter
mode depicted in Fig. 11.
The spectrum was obtained
using a 2-eps bandwidth

POWER SPECTRAL DENSITY (fw)

filter
5¢'>o—€<‘)ﬁt')o
FREQUENCY, cycles/sec
D. Buckling
At a negative internal pressure p. = —0.035 psi, the

hydrostatic pressure was sufficiently large to cause buckling
of the 0.0040-in. shell. The amplitude of buckles increases
rapidly as the hydrostatic pressure is increased beyond the
critical buckling pressure. The buckling mode of the
0.0040-in.-thick shell, measured by the same instrumenta-
tion, consists of 15 circumferential waves with nodal lines
parallel to the cylinder axis but no circumferential nodal
lines between the ends. As mentioned previously, it is
interesting to note that the amplitude of flutter became very
large as the buckling condition was approached. The largest
amplitude of oscillation occurred at a negative internal
pressure of approximately 4 of the critical buckling pressure.
As the shell buckled, the amplitude of oscillation became
small again; the cylinder became quite stable when the
buckles deepened. One perhaps may think of the shell with
large buckles as a corrugated shell, the critical flutter speed
of which is high. With this point of view, one should expect
an entirely different aeroelastic behavior of a cylinder with
respect to buckling due to axial compression.

5. Role of Boundary Layer Flow

The boundary layer flow over a solid body has important
influence in many phenomena in aeroelasticity. In buffeting
or stall flutter, the boundary layer may detach from the solid
wall, causing complete change in flow pattern. In panel
flutter, the boundary layer causes changes in amplitude and
phase relationship between pressure and wall displacement.

To formulate a simple idealized problem, which sheds
some light on the role of boundary layer in panel flutter,
consider the following: an infinite flat plate oscillates
harmonically in a standing sine wave with straight nodal
lines perpendicular to the flow. The unperturbed flow in
the half-space above the plate is a uniform supersonic flow
of Mach number M ; in between the supersonic flow and the
plate is a layer of parallel uniform subsonic flow of constant
thickness & and Mach number M. The interface between
the supersonic flow and the subsonic layer is a vortex sheet
of constant strength. Assume that the amplitude of oscilla-
tion of the plate is small compared with the thickness of the
subsonic layer 6 and that the perturbed flows in both the
subsonic layer and the supersonic half-space are isentropic
and irrotational. The problem is to relate the pressure dis-

. tribution on the plate with the surface displacement.

Although the idealization just named is so severe that the
conditions are unrealizable, it does preserve two features that
are important to the problem. First, the entire flow outside
of the boundary layer is influenced by the oscillation of the
wall; second, the pressure across the boundary layer does not
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Fig. 13 Notations for an idealized boundary layer

remain constant but is variable throughout the thickness.

Let (u,») be the perturbation velocity and ¢ be the per-
turbation velocity potential, so that V¢ = (u, v) and (u® +
v?)/U? <« 1. The uniform main flow velocity, speed of
sound, fluid density, and Mach number will be denoted by
U, a, p, M, respectively, and the corresponding quantities
in the subsonic layer will be indicated with a subscript &

(see Tig. 13). The linearized equations of motion are (see
Ref. 26, pp. 419, 432)
LYo Mg 5 0% 0%

vor T oo TP o T o W20
1 0%s |, 2M; 0%¢s , O%bs _ 0’5
or T e ot PP om T e @

for (0 <y <9)
BE=M2—-1>0 Bs2=1—M2>0
The boundary conditions are (— ©» <z < ®), (— o << =)

o 2 _ %%, P
y = 0: ay‘at+Uaax (3)

O¢s _ 01 0z
oy ot 3z

b_d_) bzl Dzl

=5 —0: ()

= § :
+0 > ;T U3, (5)
y =08 pld™t) = plx,6+y) (6)
ie.,

<b¢a+ U, am) _ p< LU ¢>aty=5

y — «: finiteness and radiation condition (7)
Consider a standing wave on the wall:

2z, t) = & > an Sinr%@ ®

m=1

In the process it will be shown that the perturbed oscillation
of the boundary layer [interface z:(x, t)] consists of not only a
standing wave but also a traveling wave. The traveling
wave becomes more important to the stability of the panel
as the supersonic Mach number is reduced (M — 1). Thus
a surprising reconciliation between the ‘‘standing wave
theory of panel flutter” and the ‘“‘traveling wave theory
of panel flutter” (Miles?) is obtained. Write

@t = Y A4, glwtta,m) — A ga@=7,0  (9)
a@it = > B gltte) = S B elaE=V,0  (10)
where

a, = vr/L V, = —w/a, (11)

It is easy to see that the differential Eqgs. (1) and (2) have
the solutions

¢ = i E, eiletta,z—v,y")

p=—

W=9y-98 (12
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¢s= >

»= —

[C, sin{,y + D, cosf,yletlotta®)  (13)

where

w? 2M wer,
71/2 = (;2 + -

+ (A2 — D2

(14)

2 1/2
,szf[Mz<lﬁ+,,> _y2:| (v = £1, £2,...)
L T

w? 2M swaor,

G =t T (U~ Day?
(15)
& = % [Mg(ff-k v>2 — vz]m (v = +1, £2,...)
and
k= wL/U ks = wL/Us (16)

are reduced frequencies.

As v ranges over — @ t0 =, 7,% {,? can have both plus and
minus signs. For v,, the selection of branches of the multi-
valued function must be based on the radiation and finiteness
conditions at . For {,, it is arbitrary. Choose %,, {, to
be real and positive if v,% {,* were real and positive, and
¥» §» to be imaginary with complex argument —/2 (on the
lower half-plane) if v,% {,? were real and negative. With
this choice, ¢(z, y; ¢) represents an outgoing wave in the y
direction if v,2 > 0 or decreases exponentially as y — o if
7,2 < 0. Note that, if w were allowed to be complex, then a
divergent wall oscillation, Im w < 0, will correspond to a
complex-valued +, with Im v, < 0. Then ¢ decreases with
increasing ¥, as the radiation condition would imply.

The constants E,, C,, D, can be determined from the
boundary conditions (3-5). Then condition (6) gives the
desired result:

B,/A, = 1/(cosk, — o, sink,) (1

where
Ky = {0 (18)
o = —gP 0T Uaw) & . pU <(k/7r) +V>2 2
ps (w 4+ Usa,)? v, psUs? \(ks/m) + v (,1),6)

Thus the problem is solved. The pressure on the wall is
obtained:

w0

p@O) =5 3 i(w + Uay)? j—” ST (k,)e@Ham (20

y=— o

where

cosk, + (1/0,) sink,
oSk, — 0, SInk,

M(k,) = 21)

The function 91(«,) represents the influence of the boundary
layer. Since 9m(k,) — 1 as § — 0, the expected solution of an
oscillating wall in a uniform supersonic main flow is ob-
tained:

wall pressure in potential flow

° . 4, .
p >, ilo+ Ua)? b gilwtt o)

p=— v

Y
(22)

To examine the nature of the solution, it is sufficient to
consider » = 1 and —1, corresponding to traveling waves of
wave length 2L up- and downstream, respectively; other
values of » merely represent waves of shorter wave length
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Fig. 14a Real part of the function M (x,), ratio of aero-
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layer; traveling waves; M = 1.3, M; = 0.65

2L/|v].  As traveling waves, the individual terms can be
understood better in terms of the phase velocity V, relative
to the panel [see Eqs. (9~11)]. Thus

Y» = ([avl/a) [(U - Vv)2 - az]llz

£ = (lal/a) [(Us — V)* — a2 (23)
. pU? <U—Vy>2§'u
oy = — 1 _—7) 2
psUs? \Us — V.) 7,
p@0) = p 3 iU — Vmi‘;—” oM (1) s = VD)

It is seen that v,, {» vanish when, respectively,

U~-V, = =*a Us — V., = +as (24)
Further, o» becomes either zero or indeterminate if
U=17, Us=1V, (25)

These correspond to steady transonic flows or static condi-
tions, respectively, with respect to an observer moving with
the traveling wave. In the former case, Eq. (24), the
approximation is not valid.

The influence of boundary layer is exhibited by the function
9M(x,), which is the ratio of pressures in flows with and
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without boundary layer. If one sets T = T, so thatp = ps,
p = ps, & = a5 for the undisturbed flow, then 9 (x;) depends
on the parameters M, Ms, 6/L, and k.

The behavior of 9 («k») is exhibited numerically in Fig. 14,
which is very instructive in showing that a wide variation
in 9% is possible. On the other hand, a standing wave of the
‘wall,

20(z,t) = 2z € sin(wz/L) (26)
corresponds to
A:bl = :l:Zo/274 Qqy = :!:T/L (27)
1 . T
= = aefetgintt
a) cosr, — op sinm 0 OV

L L\ ® giet—(re/D]
COSK_1 — 01 SINK_1 coskr — oy sink; /) 2¢
(28)

This shows clearly that the edge of the boundary layer ap-
pears as an attenuated wall oscillation plus a traveling wave.

The foregoing results cannot be used directly in analyzing
panel flutter of finite panels, because the influence of a lead-
ing edge is not clarified. It is known that for 1 < M < 1.4
the potential theory of supersonic flow shows a strong leading
edge effect (no disturbance in front of the leading edge).
For the idealized boundary layer (uniform subsonic flow in
0 < y < 9), the writer has worked out a complete solution
for an arbitrary oscillation of a finite wall, but the results
are complicated. For a qualitative examination, two simple
alternatives are suggested. The first ignores the leading
edge effect, treating a finite panel as one period of an infinite
wall. Thus, if

zo(z,t) = 0 forz <0

=€ an sinn%c forz > 0 (29)

m=1

it is assumed that the wall pressure p(z,f) is the same as that
induced by

zo(x,b) = it > am siny%c for —w <2< o (30)

m=1

Hence, from Eq. (20), one has

2 ©
p(x,O;t) — ;gz giot Z ((Bme'imrx/L — CB_me"im"”’/L)am (31)
m=1
where
2 — 2
@, = EEMDT G = EZm )

(32)

The second alternative assumes that the change of aero-
dynamic pressure due to boundary layer on a finite panel
is the same as that on an infinite wall with the same wave
form repeated periodically. Thus, if zy(z,t) is given by (29),
one assumes that

pressure on wall = p, + Ap (33)

where p, is the wall pressure corresponding to (29) in a po-
tential flow without a boundary layer, and Ap is the differ-
ence of p from Egs. (20) and (22). The function po(z,f) is
known (see Miles?®). Simplifications are discussed by
Luke®® and Lock and Fung.’* The function Ap is

2

— Eg Aot - { _ M imrz/L _
Ap = 57 ¢ mz=:1 l:(Bm e

m

[@_m _ (k_;lgﬁjl e—imr:c/L} am  (34)
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The first alternative is used in the flutter calculations to be
discussed in the next section, in which the analysis is ex-
tended to circular cylinders.

It is hoped that such a simple analysis can be supple-
mented by a comparison of the final results with those ob-
tained in more exact theories. A theoretical-empirical
scheme of fixing 8, M, T's might be evolved which could be
sufficiently accurate for practical purposes. This, however,
has not been done yet. Two improved theories have been
published so far. One, due to Miles,?' considers the boundary
layer as an inviscid, parallel shear flow over an infinite, plane
panel. The other, due to McClure,? treats the full prob-
lem in the Heisenberg, Tollmien, Lin, Lees, Lighthill tradi-
tion, extending the boundary layer problem to oscillating
walls. Both Miles and McClure applied their theories to
panel flutter. Miles® showed that, for a circular cylinder,
the stability boundary of short-wavelength traveling waves
does not change much on account of the shear layer, but the
rate of divergence in the unstable regime may be reduced
by an order of magnitude. MecClure’s solution of the tran-
sonic flutter of a flat plate is truly remarkable. In applica-
tion to the Lock-Fung experiment, McClure obtained the
stability boundary as shown in Fig. 3, which is rather close
to the experimental value. However, it must be remembered
that McClure ignores the leading edge effect in the manner
of Eq. (31). How the leading edge effect would influence
MecClure’s stability boundary is yet unknown.

Miles and MecClure’s analyses are, of course, much more
complicated than what was presented here. There are still
weakness and difficulties that make an extension of their
solutions to an arbitrary wall oscillation impossible. Fortu-
nately, the flexible wall problem has attracted much atten-
tion among aero- and hydrodynamicists recently, owing to a
great debate about the possibility of reducing the drag of a
body in a flow by elastic walls. The names of Kramer,
Benjamin, Landahl, Becker, and Laufer are becoming well
known in this newly discovered field. It is expected that
the matter will be settled before long and with it the aero-
dynamic aspects on panel flutter, but the matter will not be
discussed further here.

6. Theoretical Calculations for Cylindrical Shells

Krumhaar?! has presented a rigorous analysis of the sym-
metric flutter of a circular cylindrical shell in a supersonic
flow parallel to the cylinder axis, under the assumptions of
linear piston theory for aerodynamic pressure and Timo-
shenko’s equations for elastic cylinders. The eigenvalues
were found rigorously, thus removing any shadow of doubt
caused by the Galerkin approach, which incidentally, was
confirmed. (The number of terms required, however, may
be quite large.) Krumhaar’s results show that the aero-
dynamic and material damping has tremendous stabilizing

‘influence on the flutter of cylindrical shells in the symmetric

mode, as was pointed out earlier by Voss.18

Krumhaar’s analysis yields a set of critical thickness vs
Mach number curves as shown in Fig. 15. Here g is the so-
called structural damping coefficient. The value of g of the
Ames model, estimated from Watts’ measurements,?? is
0.0025. (Such small values of g are pertinent to monocoque
missile shells. Commonly used values of damping in ordinary
airplane structures for wing flutter analysis are an order of
magnitude larger. On the other hand, the internal friction
of copper or aluminum at room temperature would be one
or two orders of magnitude smaller.) The absence of sym-
metric flutter from the wind tunnel tests probably is due to
material damping.

In Fig. 15, several curves obtained by Anderson3* also have
been included, showing the influence of boundary layer flow
on symmetric flutter. The assumptions of Anderson’s
calculations will be discussed later, but note here that the
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influence of the boundary layer on the critical flutter condition
is not equivalent to material damping.

Voss!® also showed that material damping has a much
smaller influence on flutter of cylindrical shells in the “scallop”
modes, with many longitudinal nodal lines uniformly spaced
along the circumference of a circular cross section. In con-
trast, the boundary layer flow has profound influences on the
scallop modes of flutter. The last conclusion was reached in
Anderson’s analysis® of the boundary layer in a manner
analogous to that presented in the preceding section.

The idealized problem is posed as follows. A uniform
parallel subsonic layer of constant thickness exists between
a uniform supersonic flow with velocities in the z direction
and a circular cylinder whose centerline coincides with the
z axis. A small disturbance is induced by an oscillation of
the wall of the cylinder. It is desired to find the aerodynamic
pressure induced on the wall. The results then are used to
analyze the flutter of a thin shell of finite length.

Notations and linearized potential equations and boundary
conditions are the same as those used in the flat plate case.
In cylindrical polar coordinates, consider an upwash dis-
tribution on the wall, r = R, of the form

w(x,R,ﬁ,t) = Wy sin(mﬂ'x/L) cosnf 6iwt (35)

The boundary conditions for the velocity potentials ¢ and
¢s are the same as Eqgs. (3-7), except that 0/9y is replaced by
9/0r. For simplicity, the pressure on the interface r =
R - 6 4 a1(x, 0, 1), induced by the oscillation of the interface,
is assumed to be given by the two-dimensional linear piston
theory. (This assumption introduces errors when the ecir-
cumferential wave number is large and should be removed
in future work, see Krumhaar.?®) The solution yields the
pressure on the cylinder wall corresponding to (35):

p(x,R,08) = (wo0s85Us/2M 5)e™t cosnf X .
{[al]me——i(mm/L) —_ [a2]mnez(m1rx/L)} (36)

The expression for [oq]ms. and [as].. involves Bessel func-
tions in a rather complex manner. By superposition, the
pressure due to an arbitrary oscillation of the cylinder wall
can be obtained. Then the Lagrangian equations of motion
can be set up, and the critical flutter condition can be derived
by Galerkin’s method. The details of this lengthy calcula-
tion were carried out by Anderson and are presented in Ref.
34.

The model of the boundary layer again is defective, and it
is necessary to develop a scheme for replacing a physical
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Fig.15 Effect of material damping and boundary layer on
shell thickness required to prevent symmetric flutter.
Copper cylinder at altitude 50,000 ft; R/L = 0.5, M; = 0.5
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Fig. 16 Effect of boundary layer thickness on the shell
thickness required to prevent flutter in scallop mode;
copper cylinder at 50,000-ft altitude

boundary layer with an appropriate idealized boundary layer.
A tentative scheme is as follows. A typical cross section of
the cylinder is chosen at which the boundary layer profile
isknown. Leave M;arbitrary, assume T’ to be the adiabatic
wall temperature, and determine the other parameters Us,
ps, and & according to the assumed M; and T’ and the usual
requirements that ps = p in the undisturbed flow, that the
loss of volume flow through the idealized boundary layer is
the same as the loss in volume flow through the actual bound-
ary layer, and that the boundary layer is turbulent. With
this scheme, some detailed comparison of the aerodynamic
pressure computed by the foregoing model and that given
by linear piston theory is obtained. Attenuation in forces
and change in phase shift between force and displacement
are particularly evident when » is large (i.e., for scallop modes
with many longitudinal nodes). The frequency dependence
of these changes is rather complicated.?4

When the theory is applied to the scallop flutter of a thin-
walled circular cylinder of finite length I, with Donnell’s
equation describing the elastic behavior of the shell and
assuming freely supported edge conditions, the results shown
in Fig. 16 are obtained, which refer to a copper cylinder with
L/R = 2 and show the effect of boundary layer thickness
on the flutter boundary, the ordinate being proportional to
the thickness ratio required to prevent flutter. The very
significant effect of boundary layer is seen. Figure 17 shows
the influence of the structural damping g on the scallop mode
of flutter. The ¢ factor was introduced by multiplying all
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Fig. 17 Influence of structural damping on the scallop
mode of flutter of a copper cylinder
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elastic restoring force terms by a factor (1 + 7g). It is seen
that the influence of g is small. Other results concerning the
effect of varying n, M;, and p.. are given in Ref. 34.

The symmetric mode of flutter, n = 0, is a class in itself.
Some results are indicated in Fig. 15.

7. Role of Structural Details

The importance of aerodynamic details in the flutter pre-
diction has been diseussed in the foregoing. It requires,
perhaps, no great persuasion to stress also the importance of
structural details. Although in exploratory papers simplified
structures suffice, in engineering designs it is desirable to be
more careful. Voss!® has emphasized the importance of
membrane stress and inertial forces in the circumferential
and longitudinal directions in problems of cylindrical shells.
Many papers on vibrations of cylinders have demonstrated
the large differences in the frequency spectra when the edge
conditions are changed from freely supported conditions to
clamped edges. Recent examination of the related problem
of buckling of thin shells again calls attention to the great
importance in satisfying the realistic edge conditions.

A spacecraft may use nonconventional structures that
have no counterpart in conventional theories of plates and
shells. An example of corrugation-stiffened plates is dis-
cussed by Fung.? For such a plate the twisting moments
in two orthogonal directions are unequal, thus violating a
basic relation in the conventional plate theory.

8. Conclusions

The sizable effort in recent years concerning panel flutter
has produced a number of theories with varied assumptions.
The purpose of this article is to survey these assumptions in
the light of experimental evidence. The reader probably is
struck by the meagerness of definitive experimental data.
This attests to the difficulty in performing panel flutter tests.
Small details of the model construction, edge conditions, and
boundary layer are all important. Therefore, as the first
conclusion, the author would state that, in the future, more
decisive, well-controlled experiments in panel flutter should
be performed to supply basic data against which theoretical
analyses can be checked.

The author believes that an objective of further panel flutter
research is to evolve with a computing program of known
aceuracy which is sufficiently flexible to meet the needs of
varied designs of flight structures. At the present time, crude
estimates of panel flutter boundary, within an order of
magnitude, already are available, but these estimates cannot
meet the needs of the industry. The hope of providing a
set of simple empirical curves, based either on experiments
or on caleulations, might well be dispelled.

To help formulate a computing program, the following
conclusions and recommendations may be useful:

1) The viscous boundary layer flow can have important
influence on flutter boundaries. For a flat plate, the bound-
ary layer becomes important at lower supersonic Mach
numbers (M < 1.4). For cylindrical shells, the boundary
layer has a large effect with respect to “scallop” modes of
flutter (with a number of axial nodal lines along the circum-
ference), even at high Mach numbers.

2) The influence of boundary layer is generally stabilizing.
In other words, ignorance of boundary layer would lead to
conservative design criteria. However, the interaction be-
tween boundary layer damping and structural damping is
somewhat unpredictable. For symmetric flutter of cylindri-
cal shells, for which structural damping has large influence,
whether ignoring the boundary layer is conservative or not
is uncertain.

3) The linear piston theory, the static approximation, or
the quasi-steady approximation of aerodynamic pressure
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should not be used for scallop modes of flutter of eylindrical
shells, if the number of circumferential nodes is large (n of
order 10).

4) The edge conditions of the panel have profound in-
fluence on the stability, For complicated structures such as
corrugation-stiffened panels, small details of edge conditions
may influence significantly the frequency spectrum of the
panel and the panel flutter boundary.

5) A buckled plate or a buckled shell may or may not be
more stable than an unbuckled one, depending on the edge
conditions, the direction of the compressive loads, and the
amplitude of the buckle. Large buckles caused by compres-
sion perpendicular to the direction of flow, with nodal lines
parallel to the flow, tend to stabilize the panel. Buckling
caused by compressive loads parallel to the direction of flow
seems to be strongly destabilizing and may induce large
amplitude flutter.

6) A rewarding topic for future research is to study panel
flutter as a problem in nonlinear mechanics. The author
has emphasized the difference in the practical definition of
flutter in experiments and that in a linearized theory. So
far, the identification of experiments with theory is intuitive.
It is evident that a realistic theory is desired.
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